First-order Convex Optimization Methods for Signal and Image Processing Ph.D. Thesis
نویسنده
چکیده
In this thesis we investigate the use of first-order convex optimization methods applied to problems in signal and image processing. First we make a general introduction to convex optimization, first-order methods and their iteration complexity. Then we look at different techniques, which can be used with first-order methods such as smoothing, Lagrange multipliers and proximal gradient methods. We continue by presenting different applications of convex optimization and notable convex formulations with an emphasis on inverse problems and sparse signal processing. We also describe the multiple-description problem. We finally present the contributions of the thesis. The remaining parts of the thesis consist of five research papers. The first paper addresses non-smooth first-order convex optimization and the trade-off between accuracy and smoothness of the approximating smooth function. The second and third papers concern discrete linear inverse problems and reliable numerical reconstruction software. The last two papers present a convex optimization formulation of the multiple-description problem and a method to solve it in the case of large-scale instances.
منابع مشابه
An optimal subgradient algorithm for large-scale bound-constrained convex optimization
This paper shows that the OSGA algorithm – which uses first-order information to solve convex optimization problems with optimal complexity – can be used to efficiently solve arbitrary bound-constrained convex optimization problems. This is done by constructing an explicit method as well as an inexact scheme for solving the bound-constrained rational subproblem required by OSGA. This leads to a...
متن کاملConvex Optimization for Image Segmentation (print-version)
Segmentation is one of the fundamental low level problems in computer vision. Extracting objects from an image gives rise to further high level processing as well as image composing. A segment not always has to correspond to a real world object, but can fulfill any coherency criterion (e.g. similar motion). Segmentation is a highly ambiguous task, and usually requires some prior knowledge. This...
متن کاملApproximation and Optimization in Image Restoration and Reconstruction
Iteratively Re-weighted Least Squares minimization (IRLS) appears for the first time in the approximation practice in the Ph.D. thesis of C. L. Lawson in 1961 for L∞ minimization. In the 1970s extensions of Lawson’s algorithm for `p-minimization were proposed, as reported in the work of M. R. Osborne. IRLS has been proposed for sparse recovery in signal processing in [5] and for total variation...
متن کاملHigher-Order Methods for Large-Scale Optimization
There has been an increased interest in optimization for the analysis of large-scale data sets which require gigabytes or terabytes of data to be stored. A variety of applications originate from the fields of signal processing, machine learning and statistics. Seven representative applications are described below. Magnetic Resonance Imaging (MRI): A medical imaging tool used to scan the anatomy...
متن کاملOptimal subgradient algorithms with application to large-scale linear inverse problems
This study addresses some algorithms for solving structured unconstrained convex optimization problems using first-order information where the underlying function includes high-dimensional data. The primary aim is to develop an implementable algorithmic framework for solving problems with multiterm composite objective functions involving linear mappings using the optimal subgradient algorithm, ...
متن کامل